
Towards Semantics Lifting for Scientific Computing:
A Case Study on FFT

Naifeng Zhang
Carnegie Mellon University

Pittsburgh, USA
naifengz@cmu.edu

Sanil Rao
Carnegie Mellon University

Pittsburgh, USA
sanilr@andrew.cmu.edu

Mike Franusich
SpiralGen, Inc.
Pittsburgh, USA

mike.franusich@spiralgen.com

Franz Franchetti
Carnegie Mellon University

Pittsburgh, USA
franzf@andrew.cmu.edu

Abstract
The rise of automated code generation tools, such as large
language models (LLMs), has introduced new challenges in
ensuring the correctness and efficiency of scientific software,
particularly in complex kernels, where numerical stability,
domain-specific optimizations, and precise floating-point
arithmetic are critical. We propose a stepwise semantics lift-
ing approach using an extended SPIRAL framework with
symbolic execution and theorem proving to statically de-
rive high-level code semantics from LLM-generated kernels.
This method establishes a structured path for verifying the
source code’s correctness via a step-by-step lifting proce-
dure to high-level specification. We conducted preliminary
tests on the feasibility of this approach by successfully lift-
ing GPT-generated fast Fourier transform code to high-level
specifications.

Keywords: Semantics lifting, static analysis, scientific com-
puting, fast Fourier transform, SPIRAL

1 Introduction
The growing adoption of neural-based code generation tools,
such as large language models (LLMs), presents significant
challenges in ensuring the correctness and efficiency of sci-
entific software [10]. Although LLM-generated code may
be syntactically valid, it often falls short of meeting the rig-
orous correctness and performance standards required for
complex scientific kernels. Scientific computing demands nu-
merical stability, domain-specific optimizations, and accurate
floating-point arithmetic, which are challenging to achieve
in code generated without domain expertise. By deriving
the semantics of generated kernels statically (at compile
time) for cases with unknown (runtime) size parameters, we
can identify potential bugs, inefficiencies, and performance
bottlenecks before deploying the code. This statically de-
rived information can also be fed back into neural-based
code generation tools to iteratively improve the generated
code. However, scientific computing poses unique challenges
for static analysis tools. Accurate handling of floating-point
arithmetic requires managing rounding errors and numerical
precision, while pointers, recursion, and transcendental func-
tions like sine and cosine further complicate static analysis.
To address these issues, this work proposes stepwise seman-
tics lifting as an early-stage experimental solution within

constrained boundaries. We develop a novel extension to
the SPIRAL system [6, 16], which is equipped with sym-
bolic execution and theorem-proving capabilities. Through
an LLVM-to-SPIRAL parser, we import LLM-generated sci-
entific kernels into SPIRAL and derive their semantics using
SPIRAL’s formal framework and engine.

Contributions. To summarize, this paper makes the fol-
lowing contributions:

1. An experimental approach, stepwise semantics lifting,
for statically extracting high-level semantics from sci-
entific kernels.

2. An end-to-end demonstration of the proposed approach
by lifting GPT-generated fast Fourier transform code
to its high-level specification.

2 Background
In this section, we provide background on SPIRAL, a formal
code generation system, and the target scientific kernel: the
fast Fourier transform (FFT).

The SPIRAL system. The SPIRAL system [16] originated
as an automatic performance-tuning system for signal pro-
cessing algorithms, particularly focusing on FFT algorithms.
This focus stemmed from the availability of a formal frame-
work (the Kronecker product formalism [13, 19]), which
enables capturing and manipulating FFT algorithms in high-
level mathematical representations. Over time, this represen-
tation was generalized to encompass a broader range of al-
gorithms [5], including both sparse and dense mathematical
computations. SPIRAL has thus evolved into a comprehen-
sive code generation system, capable of taking high-level
specifications and producing optimized implementations for
target platforms.
SPIRAL dialects. The SPIRAL system consists of three

main components used in a stepwise code generation process:
i) Signal Processing Language (SPL) [21], ii) Σ-SPL [9], and iii)
internal code (icode) [6]. SPL, the top-level domain-specific
language (DSL), describes the mathematical semantics of ker-
nels and the functional data flow of the target algorithm. The
lower-level DSL, Σ-SPL, captures loop abstractions, while
icode serves as an abstract code representation adaptable to
different code syntaxes. As shown in Figure 1, each layer
of abstraction is connected by a rewrite system that applies
recursive descent followed by confluent term rewriting. For
further details, we refer readers to the respective citations.

TPSA ’25, January 21, 2025, Denver, CO, USA Naifeng Zhang, Sanil Rao, Mike Franusich, and Franz Franchetti

Figure 1. Overview of proposed semantics lifting procedure
via SPIRAL. We propose to reverse the well-established code
generation (i.e., lowering) process [6, 9, 15, 16, 21] to step-
wisely lift the semantics of the source code.

Formal guarantees of SPIRAL. SPIRAL is built on top
of the GAP computer algebra system [18], enabling localized
correctness checks during rule application between abstrac-
tion layers. This allows verification that the left-hand and
right-hand sides of each rewrite rule are equivalent at every
step. Previous work, namely HELIX [22], has demonstrated
that SPIRAL’s algebraic guarantees can be extended to pro-
vide theorem prover-level assurances.

The FFT algorithm. The discrete Fourier transform
(DFT) is a fundamental tool in science and engineering, play-
ing a key role in areas such as signal processing, spectral
analysis, communications, machine learning, and finance.
The FFT is a class of efficient algorithms for computing the
DFT.While a direct computation of the DFT for an 𝑛-element
vector requires 𝑂 (𝑛2) operations, the FFT reduces this com-
plexity to 𝑂 (𝑛 log𝑛).

FFT algorithms in SPL. In SPIRAL, linear transforms are
represented as matrix-vector multiplications. For example,
the DFT definition is viewed as a matrix-vector product:

𝑦 = DFT𝑛 𝑥, DFT𝑛 = [𝜔𝑘𝑙
𝑛]0≤𝑘,𝑙<𝑛, (1)

where 𝜔𝑛 = 𝑒−2𝜋𝑖/𝑛 and 𝑖 =
√
−1. There are several FFT

algorithms for computing the DFT. Using SPL, we can define
one of the most widely adopted FFT algorithms, the recursive
Cookley-Tukey FFT algorithm, as

DFT𝑛 = (DFT𝑚 ⊗ I𝑘) T𝑛𝑘 (I𝑚 ⊗DFT𝑘) L𝑛𝑚, 𝑛 =𝑚𝑘, (2)

where I is the identity matrix, T is the twiddle matrix and L is
the stride permutation matrix. L𝑚𝑘

𝑚 permutes the elements of
the input vector as 𝑖𝑚 + 𝑗 ↦→ 𝑗𝑘 + 𝑖, 0 ≤ 𝑖 < 𝑘, 0 ≤ 𝑗 < 𝑚 [8].

3 Stepwise Semantics Lifting
Our proposed approach explores the feasibility of lifting
scientific kernels by reversing SPIRAL’s rule-based code gen-
eration (i.e., lowering) process to transform source code into

the highest achievable abstraction level, which is illustrated
in Figure 1. Rather than employing linear rewriting as in the
lowering process, lifting is structured as a search problem,
where each step identifies the sequence of rule applications
necessary to increase the abstraction level.

We demonstrate our approach through an end-to-end lift-
ing of FFT code generated by GPT-4 [1], as presented in List-
ing 1. We have developed a custom parser that extracts the
code’s abstract syntax tree (AST) and converts it to SPIRAL’s
intermediate representation, icode. We omit the discussion
of this parser due to space constraints.
1 #include <math.h>
2 #include <stdlib.h>
3 #define M_PI 3.14159265358979323846
4 void fft_recursive(double* data, int n) {
5 if (n <= 1) return;
6 // Allocate temporary storage for half-size FFTs.
7 double* even = (double*)malloc(n * sizeof(double));
8 double* odd = (double*)malloc(n * sizeof(double));
9 for (int i = 0; i < n / 2; ++i) {
10 even[2 * i] = data[4 * i];
11 even[2 * i + 1] = data[4 * i + 1];
12 odd[2 * i] = data[4 * i + 2];
13 odd[2 * i + 1] = data[4 * i + 3];
14 }
15 // Recursively compute FFTs.
16 fft_recursive(even, n / 2);
17 fft_recursive(odd, n / 2);
18 for (int i = 0; i < n / 2; ++i) {
19 double theta = -2.0 * M_PI * i / n;
20 double wr = cos(theta);
21 double wi = sin(theta);
22 // Twiddle factor multiplication.
23 double real = odd[2 * i] * wr - odd[2 * i + 1] * wi;
24 double imag = odd[2 * i] * wi + odd[2 * i + 1] * wr;
25 data[2 * i] = even[2 * i] + real;
26 data[2 * i + 1] = even[2 * i + 1] + imag;
27 data[2 * (i + n / 2)] = even[2 * i] - real;
28 data[2 * (i + n / 2) + 1] = even[2 * i + 1] - imag;
29 }
30 // Cleanup.
31 free(even);
32 free(odd);
33 }

Listing 1. GPT-generated recursive FFT in C, which imple-
ments Equation 2.

Internal code to Σ-SPL. The provided example contains
two loop bodies. We will now demonstrate how to lift lines
9-14 to Σ-SPL. To capture the access patterns in the code
block, we utilize the gather and scatter formalism within
SPIRAL [15]. In general, any read and write access can be
formalized as an outer product of an𝑛×1 and a 1×𝑛 standard
basis vector:

𝑒𝑛×1
𝑠 (𝑗) · 𝑒

1×𝑛
𝑔 (𝑗) ,

where 𝑒𝑛×1
𝑘

(resp. 𝑒1×𝑛
𝑘

) is an 𝑛 × 1 (resp. 1 × 𝑛) vector with a
one at the 𝑘 th position and zeros elsewhere. For the next step,
we first need to conduct a range analysis on data, which is a
pointer passed into the function without explicitly specified
ranges. Now, line 10 turns into

𝑒𝑛×12𝑗 · 𝑒1×2𝑛4𝑗 .

We apply a similar analysis to lines 11-13 to obtain 𝐵 𝑗 , and
then we can write the entire loop (lines 9-14) as

𝑛/2−1∑︁
𝑗=0

𝐵 𝑗 , 𝐵 𝑗 =

3∑︁
𝑖=0

𝑒𝑛×12𝑗+(𝑖 mod 2) · 𝑒
1×2𝑛
4𝑗+𝑖 . (3)

Towards Semantics Lifting for Scientific Computing TPSA ’25, January 21, 2025, Denver, CO, USA

Equation 3 can be directly captured by the iterative sum
operator in Σ-SPL [9].

Σ-SPL to SPL. To lift Σ-SPL to SPL for the given example,
we recognize the pattern of interleaved real and imaginary
formats in this step, as 𝐵 𝑗 gathers from the same source
and writes to two outputs twice, with an index offset of 1.
The interleaved format of complex numbers is represented
by the (·) operator in SPIRAL [7] (which corresponds to
RC() in Listing 2). Therefore, we can constrain the search
problem to permutations of a complex vector. By definition,
a stride-2 permutation reads with a stride of two and writes
continuously, which aligns with the behavior observed in
our target code block (lines 10-13). Consequently, the output
from this stage is

L𝑛2 , (4)
which, in SPL, represents a stride-2 permutation for a vector
of 𝑛 complex numbers.
Induction on SPL objects. After lifting all loop bod-

ies to SPL expressions, we need to combine all lifted SPL
components to form a complete SPL expression. In our ex-
ample, we demonstrate how to lift lines 10-13 to L𝑛2 ; simi-
lar principles apply to lifting lines 18-29, which results in
(DFT2 ⊗ I𝑛/2) T𝑛𝑛/2. Therefore, we lift the code in Listing 1 to
the representation in Listing 2.

1 void fft_recursive(double* data, int n) {
2 splfunc(concat_array(even, odd), data, i, RC(L(n, 2)));
3 fft_recursive(even, n / 2);
4 fft_recursive(odd, n / 2);
5 splfunc(data, concat_array(even, odd), i,
6 RC(Tensor(F(2), I(n/2)) * Diag(n, n/2)));
7 }

Listing 2. GPT-generated recursive FFT partially repre-
sented by SPL.

Since the FFT is defined recursively in this example, in
SPL, we can write Listing 2 as

𝑀𝑛 = (DFT2 ⊗ I𝑛/2) T𝑛𝑛/2 (I2 ⊗ 𝑀𝑛/2)L𝑛2 , (5)

where𝑀𝑛 is an 𝑛 × 𝑛 matrix.
Now we can symbolically execute the entire program by

setting 𝑛 = 2. As FFT is a linear transform, we can derive the
transformation matrix by combining the coefficients of each
element in the result vector. By equivalence matching this
matrix, we can verify that the generated C code implements
a DFT2 when 𝑛 = 2. Given the base case, we can then induct
on Equation 5 and derive that 𝑀𝑛 = DFT𝑛 . Therefore, we
can consolidate all components into a single SPL expression:

(DFT2 ⊗ I𝑛/2) T𝑛𝑛/2 (I2 ⊗DFT𝑛/2)L𝑛2 . (6)

Note that the SPL expression, by definition, is evaluated
from right to left. Thus, Equation 6 aligns precisely with the
sequence of operations in Listing 1 and 2.

SPL tomathematical specification. This marks the final
step of the lifting process. In this phase, wematch the derived
SPL expression with existing entries in SPIRAL’s knowledge

base through pattern matching. SPIRAL contains a wide
range of linear transform algorithms, particularly within the
FFT family [6]. In our example, the derived SPL (Equation 6)
corresponds to Equation 2 when𝑚 = 2, 𝑘 = 𝑛/2, and inputs
are complex numbers. Hence, we can conclude that, with
computer algebra system-level guarantees, the source code
successfully implements the Cooley-Tukey FFT algorithm
recursively. We write the final output as DFT𝑛 : C𝑛 ↦→ C𝑛 .

Towards lifting multilinear operations. Our proposed
approach can be extended to other scientific kernels, such as
axpy [3], a multilinear operation that takes in two vectors of
the same length, scales one vector by a constant 𝛼 and adds
it pointwise to the other vector. We can represent axpy for
two vectors of length 𝑛 in Σ-SPL as follows:

𝑒𝑛×1𝑗 · [1, 𝛼] · I2 ⊗ 𝑒𝑛×1𝑗 . (7)
We can then identify the scaling and reduction patterns
within the axpy operation and lift Equation 7 to SPL as

[I𝑛 | 𝛼 I𝑛] . (8)

4 Related Work
The field of verified lifting [14, 17] utilizes SMT solvers to
search for and verify program summaries (in the form of loop
invariants and post-conditions) that correspond to the source
code. However, existing efforts in this domain, which focus
on stencil and tensor computations, fall short for scientific
kernels due to limitations with floating-point numbers, point-
ers, and recursive functions [17]. Our approach shares the
spirit of Stephen Wolfram’s integration of Wolfram|Alpha
with GPT [20], but leverages amore robust domain theory [5]
suited to the complexity of floating-point numerical software,
a domain typically hard to standard formal methods [2, 12].
Chelini et al. [4] similarly attempt to reverse the compilation
process for scientific applications but restrict their approach
to lifting matrix multiplications using the Affine dialect to
Linalg dialect in MLIR.

5 Conclusion
In this work, we propose stepwise semantics lifting for scien-
tific kernels and demonstrate a preliminary end-to-end lifting
from LLM-generated C code to high-level semantics that rec-
ognizes the source code as a recursive FFT implementation.
The problem of deriving the formal semantics of numeri-
cal code may indeed be unsolvable in general. However, for
the class of algorithms that the SPIRAL system addresses—a
well-defined subset of floating-point computational science
and engineering algorithms—the problem becomes tractable.
We aim to evaluate the proposed approach on a wider range
of algorithms, focusing on numerical routines with data-
independent control flows. Additionally, enhancing LLM
code generation for scientific kernels by integrating SPIRAL-
lifted information with human-guided prompts [11] could
be a promising future direction.

TPSA ’25, January 21, 2025, Denver, CO, USA Naifeng Zhang, Sanil Rao, Mike Franusich, and Franz Franchetti

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 1127353 and the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research under Award Number DE-
FOA-0002460. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation and the U.S. Department of En-
ergy. Franz Franchetti was partially supported as the Kavčić-
Moura Professor of Electrical and Computer Engineering.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge

Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774 (2023).

[2] Geoff Barrett. 1989. Formal methods applied to a floating-point number
system. IEEE transactions on software engineering 15, 5 (1989), 611–621.

[3] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington,
R Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Ham-
marling, Greg Henry, et al. 2002. An updated set of basic linear algebra
subprograms (BLAS). ACM Trans. Math. Software 28, 2 (2002), 135–151.

[4] Lorenzo Chelini, Andi Drebes, Oleksandr Zinenko, Albert Cohen, Henk
Corporaal, Tobias Grosser, and Nicolas Vasilache. 2020. MultiLevel
Tactics: Lifting loops in MLIR. (2020).

[5] Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and Markus
Püschel. 2009. Operator language: A program generation framework
for fast kernels. In IFIP Working Conference on Domain-Specific Lan-
guages. Springer, 385–409.

[6] Franz Franchetti, Tze Meng Low, Doru Thom Popovici, Richard M
Veras, Daniele G Spampinato, Jeremy R Johnson, Markus Püschel,
James C Hoe, and José MFMoura. 2018. SPIRAL: Extreme performance
portability. Proc. IEEE 106, 11 (2018), 1935–1968.

[7] Franz Franchetti and Markus Puschel. 2002. A SIMD vectorizing
compiler for digital signal processing algorithms. In Proceedings 16th
International Parallel and Distributed Processing Symposium. IEEE, 7–
pp.

[8] Franz Franchetti and Markus Püschel. 2011. Fast fourier transform.
Encyclopedia of Parallel Computing. Springer (2011), 51.

[9] Franz Franchetti, Yevgen Voronenko, and Markus Püschel. 2005. For-
mal loop merging for signal transforms. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implemen-
tation. 315–326.

[10] William Godoy, Pedro Valero-Lara, Keita Teranishi, Prasanna Bal-
aprakash, and Jeffrey Vetter. 2023. Evaluation of OpenAI Codex for
HPC parallel programming models kernel generation. In Proceedings
of the 52nd International Conference on Parallel Processing Workshops.
136–144.

[11] William F Godoy, Pedro Valero-Lara, Keita Teranishi, Prasanna Bal-
aprakash, and Jeffrey S Vetter. 2024. Large language model evaluation
for high-performance computing software development. Concurrency
and Computation: Practice and Experience (2024), e8269.

[12] JohnHarrison. 2006. Floating-point verification using theorem proving.
In International School on Formal Methods for the Design of Computer,
Communication and Software Systems. Springer, 211–242.

[13] Jeremy R Johnson, Robert W Johnson, Domingo Rodriguez, and
Richard Tolimieri. 1990. A methodology for designing, modifying,
and implementing Fourier transform algorithms on various architec-
tures. Circuits, Systems and Signal Processing 9 (1990), 449–500.

[14] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-
Lezama. 2016. Verified lifting of stencil computations. ACM SIGPLAN
Notices 51, 6 (2016), 711–726.

[15] Tze Meng Low and Franz Franchetti. 2017. High assurance code
generation for cyber-physical systems. In 2017 IEEE 18th International
Symposium on High Assurance Systems Engineering (HASE). IEEE, 104–
111.

[16] Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua,
Manuela M Veloso, Bryan W Singer, Jianxin Xiong, Franz Franchetti,
Aca Gacic, Yevgen Voronenko, et al. 2005. SPIRAL: Code generation
for DSP transforms. Proc. IEEE 93, 2 (2005), 232–275.

[17] Jie Qiu, Colin Cai, Sahil Bhatia, Niranjan Hasabnis, Sanjit A Seshia,
and Alvin Cheung. 2024. Tenspiler: A Verified Lifting-Based Compiler
for Tensor Operations. arXiv preprint arXiv:2404.18249 (2024).

[18] The GAP Group. 2024. GAP – Groups, Algorithms, and Programming,
Version 4.13.1. https://www.gap-system.org

[19] Charles Van Loan. 1992. Computational frameworks for the fast Fourier
transform. SIAM.

[20] Stephen Wolfram. 2023. Chatgpt gets its’ wolfram superpowers’. Re-
cuperado de https://writings. stephenwolfram. com/2023/03/chatgpt-gets-
its-wolfram-superpowers (2023).

[21] Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. 2001.
SPL: A language and compiler for DSP algorithms. ACM SIGPLAN
Notices 36, 5 (2001), 298–308.

[22] Vadim Zaliva and Franz Franchetti. 2018. HELIX: a case study of a
formal verification of high performance program generation. In Pro-
ceedings of the 7th ACM SIGPLAN International Workshop on Functional
High-Performance Computing. 1–9.

https://www.gap-system.org

	Abstract
	1 Introduction
	2 Background
	3 Stepwise Semantics Lifting
	4 Related Work
	5 Conclusion
	Acknowledgments
	References

