
1 Definitions
Notation. We denote complex scalars by a, b,. . . , complex vectors by x, y,. . . , vectors of complex vectors
by x, y,. . . , and operators by M , N ,. . . . Component i of vector x is denoted by xi, component i of x by xi.
The direct sum of two vectors x and y glues them together:

x⊕ y := (x0, . . . , xm−1, y0, . . . , yn−1), x⊕ y = (x0, . . . ,xm−1,y0, . . . ,yn−1).

We define the cross product of two vectors to produce a vector of vectors:

x× y := x, with x = (x, y).

We define the tensor product of two vectors as usual:

x⊗ y := x0y ⊕ . . .⊕ xn−1y.

We define the tensor product of two vectors of complex vectors componentwise:

x⊗ y := (x0 ⊗ y0, . . . ,xn−1 ⊗ yn−1).

We denote the canonical basis vectors of a complex vector space by

eN
i ∈ CN .

Operators. We define an operator as mapping from k complex vectors to m complex vectors:

M : Cn0 × · · · × Cnk−1 → CN0 × · · · × CNm−1 ; x 7→ M(x). (1)

An operator M : Cm ×Cn → Ck automatically applies the isomorphism Cm ×Cn ∼= Cm+n when applied
to only one input vector x ∈ Cm+n.

For M defined in (1) we define the arity as the pair (k, m) and the signature as the pair of tuples(
(n0, . . . , nk − 1), (N0, . . . , Nm − 1)

)
.

We define the projection operator:

πm0,...,mk−1
(x) := (xm0 , . . . ,xk−1). (2)

We alternatively write
πx(x) = x for x = (x, y),

if the components of the vector x are named.
The generalization of the identity matrix In is the identity operator

Ik0×···×kn−1→m×···×m : Ck0 × · · · × Ckn−1 → Cm × · · · × Cm , m = Πn−1
i=0 ki

with
Ik0×···×kn−1→m0×···×mr−1(x) = (x0 ⊗ · · · ⊗ xn−1, . . . ,x0 ⊗ · · · ⊗ xn−1)

We use two short-hand notations:

In := In→n and Im×n := Im→m× In→n

Any matrix M ∈ Cm×n induces an operator

M : Cmn → Cmn; x 7→ (
M · x0

)

1

with “·” being the matrix-vector product.
Using this induction, the generalization of the stride permutation matrix Lmn

m is the stride operator

Lmn
m : Cmn → Cmn; x 7→ (

Lmn
m ·x0

)
.

The vector sum operator is defined by

Σn : Cn → C;x 7→
n−1∑

i=0

xi

The constant vector operator is defined by

Cc : C0 → Cn; x 7→ c

The vector split operator is defined by

Sn : Cn → C1 × · · · × C1;x 7→ (x0, . . . , xn−1)

The vector join operator is defined by

Jn : C1 × · · · × C1 → Cn;x 7→ x0 ⊕ · · · ⊕ xn−1

Operations. An n-ary operation ¦(·, . . . , ·) constructs a new operator M from a list of n operators Mi:
(¦ (M0, . . . , Mn−1)

)
(x) := ¦(M0(x), . . . ,Mn−1(x)

)
. (3)

When possible, we prefer infix notation over prefix notation:

A ¦B ¦ C = ¦(A,B, C).

We treat operations with multiple arities the same for any arity: “¦” is the same operator in both cases:

A ¦B and A ¦B ¦ C.

A scalar operation
¦(a, b, . . .), a, b, . . . ∈ C

naturally induces (by componentwise evaluation) the vector operation

¦(x, y, . . .) :=
(¦ (x0, y0, . . .), . . . , ¦(xn−1, yn−1, . . .)

)
x, y, . . . ∈ Cn

and further (again by componentwise evaluation) the operation on vectors of complex vectors

¦(x,y, . . .) :=
(¦ (x0,y0, . . .), . . . , ¦(xn−1,yn−1, . . .)

)
x,y, . . . ∈ Cn0 × · · · × Cnn−1

which finally induces an operation on operators by (3).
We now introduce the most important operations. Compatible operators can be composed:

(M ◦N)(x) := M(N(x)). (4)

We denote iterative composition by
(

n−1∏

i=0

Mi

)
(x) :=

(
M0 ◦ · · · ◦Mn−1

)
(x)). (5)

2

The output of multiple operators applied to the same input is concatenated by the identity operation:

(M0, . . . , Mn − 1)(x) := (M0(x), . . . , Mn−1(x)). (6)

The cross product of two operators “glues” them together:

(M ×N)(x⊕ y) := M(x)⊕N(y) (7)

The following operations are induced from scalar operations. Operators can be added (which means
pointwise addition of their outputs):

(M + N)(x) := M(x) + N(x). (8)

Operators can be multiplied (which means pointwise multiplication of their outputs):

(M ·N)(x) := M(x) ·N(x). (9)

Tensor product of operators. The tensor product of two operators is only defined if both have the same ar-
ity. The resulting operator has the same arity as both factors and the signature is the pointwise multiplication
of the factors’ signatures. For

Am0×···×mr−1→M0×···×Ms−1 and Bn0×···×nr−1→N0×···×Ns−1

we define the left tensor product

(A⊗̀B)
(
Σm0−1

i=0 em0
i ⊗xi

0, . . . , Σ
m0−1
i=0 e

mr−1

i ⊗xi
r−1

)
:=

m0−1∑

i0=0

· · ·
mr−1−1∑

ir−1=0

A
(
em0
i0

, . . . , e
mr−1

ir−1

)⊗B
(
xi0

0 , . . . ,xir−1

r−1

)

(10)
and the right tensor product

(A⊗́B)
(
Σn0−1

i=0 xi
0⊗en0

i , . . . ,Σn0−1
i=0 xi

r−1⊗e
nr−1

i

)
:=

n0−1∑

i0=0

· · ·
nr−1−1∑

ir−1=0

A
(
xi0

0 , . . . ,xir−1

r−1

)⊗B
(
en0
i0

, . . . , e
nr−1

ir−1

)
.

(11)
As notation, we use the tensor product for the identity operator:

I⊗A := I ⊗̀A and A⊗ I := A⊗́ I .

2 Examples
2.1 Signal processing

Cooley-Tukey FFT. We now reexpress the Cooley-Tukey FFT using our new operator-notation, generalizing
the well-known Kronecker product formulation. The original formulation is the matrix factorization

DFTmn = (DFTm⊗ In)Tmn
m (Im⊗DFTn) Lmn

m (12)

which describes the actual computation

DFTmn ·x = (DFTm⊗ In) · (Tmn
m ·((Im⊗DFTn) · (Lmn

m ·x)))

with “·” being the matrix-vector product. We define the DFT-specific operators

DFTmn : Cmn → Cmn; x 7→ DFT ·x and Tmn
n : Cmn → Cmn; x 7→ Tmn

n ·x.

Then (12) becomes

3

Rule 1 (Cooley-Tukey FFT)

DFTmn = (DFTm⊗ In→n) ◦ Tmn
m ◦(Im→m⊗DFTn) ◦ Lmn

m (13)

and the actual computation becomes

DFTmn(x) = (DFTm⊗ In→n)(Tmn
m ((Im→m⊗DFTn)(Lmn

m (x)))).

Convolution. Convolution of two signals cannot be expressed as matrix-vector product. However, it can
easily be defined as operator,

Convn : Cn × Cn → Cn

and a breakdown for it written as

Rule 2 (Fast convolution)

Convn = iDFTn ◦
(
(DFTn ◦π0) · (DFTn ◦π1)

)
. (14)

2.2 Matrix multiplication
In this section we use the MMM to showcase the extension of the Spiral approach to more general operators.
We define the MMM as operator, investigate the meaning of expressions of the identity, stride, and MMM
operator using “◦”, “⊗”, and “×”. We cast the well-known tiling of the MMM as three breakdown rules (one
for each dimension). Next we show how we obtain a non-recursive formula for tiling of two dimensions by
applying two recursive rules plus formula manipulation.
Definition of MMM as operator. We define the matrix-matrix multiplication operator

MMMN,M,K : CKN × CKM → CMN (15)

by

C = MMMN,M,K(A, B) :⇔ CiM+j =
K−1∑

k=0

AiK+k ·BkM+j , 0 ≤ i < N, 0 ≤ j < M.

MMM operator and tensor products. We now investigate the meaning of the tensor products

IN/NB×1→N/NB ⊗MMMNB ,M,K and MMMN,MB ,K ⊗ I1×M/MB→M/MB

for this operator.
First we compute the operation of IN/NB×1→N/NB ⊗MMMNB ,M,K . Therefore we cut the linearized

N ×K-matrix A ∈ CKN into N/NB horizontal NB ×K-stripes Ar ∈ CKNB :

A =
N/NB−1∑

r=0

eN/NB
r ⊗Ar with Ar =

NB−1∑

i=0

K−1∑

k=0

(
eNB
i ⊗ eK

k

)
ArNBK+iK+k.

We now evaluate
(
IN/NB×1→N/NB ⊗MMMNB ,M,K

)
(A, B) using (10):

(
IN/NB×1→N/NB ⊗MMMNB ,M,K

)
(A,B)

=
(
IN/NB×1→N/NB ⊗MMMNB ,M,K

)(
ΣN/NB−1

r=0 eN/NB
r ⊗Ar, B

)

=
N/NB−1∑

r=0

IN/NB×1→N/NB
(
eN/NB
r , e1

0

)⊗MMMNB ,M,K
(
Ar, B

)

=
N/NB−1∑

r=0

eN/NB
r ⊗MMMNB ,M,K

(
Ar, B

)
.

4

This shows that the operator IN/NB×1→N/NB ⊗MMMNB ,M,K expresses blocking of MMMN,M,K by cut-
ting the output and the first input into horizontal stripes of width NB .

Next we compute the operation of MMMN,MB ,K ⊗ I1×M/MB→M/MB . Therefore we cyclically dis-
tribute the columns of the linearized K × M -matrix B ∈ CKM into M/MB vertical groups and collect
them as K ×MB-matrices Br ∈ CKMB :

B =
M/MB−1∑

r=0

Br ⊗ eM/MB
r with Br =

K−1∑

k=0

MB−1∑

j=0

(
eK
k ⊗ eMB

j

)
BkM+jM/MB+r.

We now evaluate
(
MMMN,MB ,K ⊗ I1×M/MB→M/MB

)
(A,B) using (11):

(
MMMN,MB ,K ⊗ I1×M/MB→M/MB

)
(A,B)

=
(
MMMN,MB ,K ⊗ I1×M/MB→M/MB

)(
A, ΣM/MB−1

r=0 Br ⊗ eM/MB
r

)

=
M/MB−1∑

r=0

MMMN,MB ,K
(
A,Br

)⊗ I1×M/MB→M/MB
)(

e1
0, e

M/MB
r

)

=
M/MB−1∑

r=0

MMMN,MB ,K
(
A,Br

)⊗ eM/MB
r .

This shows that the operator MMMN,MB ,K ⊗ I1×M/MB→M/MB expresses blocking of MMMN,M,K by
cutting the output and the second input into vertical stripes of width 1. Each smaller MMMN,MB ,K operates
on MB of these stripes at distance M/MB .
MMM operator and the stride operator. In order to obtain blocking B into M/MB vertical stripes of
width MB , we need to reorder the columns of B before and after the tensor product. This is achieved by the
operator

IKN→KN ×(
IK→K ⊗LM

MB

)

on the input side and
IN→N ⊗LM

M/MB

on the output side.
Tiling of MMM as operator breakdown rules. Collecting the results from this section, we can express
two blocking strategies for MMM as operator breakdown rules for the operator MMMN,M,K .

Rule 3 (Base case)
MMM1,1,1 → π(A,B)→A · π(A,B) → B (16)

Rule 4 (Blocking of the N dimension)

MMMN,M,K → IN/NB×1→N/NB ⊗MMMNB ,M,K (17)

// MMM by tiling the N-dimension with block size NB
// C: NxM, A:NxK, B: KxM
// Ci: NBxM, Ai:NBxK tiles
for i=0:NB:N/NB-1

Ci = MMM(Ai, B)




C0
...

CN/NB−1


 =




A0
...

BN/NB−1


B

5

Rule 5 (Blocking of the M dimension)

MMMN,M,K → (
IN→N ⊗LM

M/MB

) ◦ (
MMMN,MB ,K ⊗ I1×M/MB→M/MB

)

◦ (
IKN→KN ×(IK→K ⊗LM

MB
)
)

(18)

// MMM by tiling the M-dimension with block size MB
// C: NxM, A:NxK, B: KxM
// Cj: NxMB, Bi:KxMB tiles
for j=0:MB:M/MB-1

Cj = MMM(A, Bj)

[
C0 . . . CM/MB−1

]
= A

[
B0 . . . BM/MB−1

]

Rule 6 (Blocking of the K dimension)

MMMN,M,K → (
ΣK2/K2

B
⊗ IMN→MN

) ◦ (
IK/KB×K/KB→K2/K2

B ⊗MMMN,M,KB
)

◦ (
(LNK/KB

K/KB
⊗ IKB→KB)× IKM→KM

)
(19)

// MMM by tiling the K-dimension with block size KB
// C: NxM, A:NxK, B: KxM
// Ak: NxKB, Bk:KBxM tiles
C = 0
for k=0:KB:K/KB-1

C = C + MMM(Ak, Bk)

C = A0B0+· · ·+AK/KB−1BK/KB−1 with A =
[

A0 . . . AK/KB−1

]
and B =




B0
...

BK/KB−1




The algorithm space spanned by Rules 3–6 contains the algorithm space of ATLAS. (Not the implementation
space, though.)

2.3 LU factorization
Definition of LU factorization as operator. We define the LU factorization and triangular solve for multiple
right-hand sides as operators:

LUN :CN2 → CN2
(20)

TSN
AL−1 :CN2 × CN2 → CN2

(21)

TSN
U−1A :CN2 × CN2 → CN2

(22)

6

Rule 7 (Recursive LU factorization)

LUN → (
L4N

N ⊗ IN/4→N/4
)

◦ (
I3N2/4→3N2/4⊕(

LUN/2 ◦(Σ2 ⊗ IN
2/4→N2/4) ◦ (MMMN/2,N/2,N/2⊕ IN

2/4→N2/4)
))

◦






1
1

1
1

1
1


⊗ IN/4→N/4




◦ (
IN

2/4→N2/4⊕TSN/2
AL−1 ⊕TSN/2

U−1A
⊕ IN

2/4→N2/4
)

◦






1
1

1
1

1
1


⊗ IN/4→N/4


 ◦ (

LUN/2⊕ I3N2/4→3N2/4
) ◦ (

L4N
4 ⊗ IN/4→N/4

)
(23)

2.4 Viterbi Decoder
A Viterbi decoder is parameterized by the following choices:

• State machine size: 2m

• Number of code words to work on: n

• Code words: c ∈ RN

• Error metric: ei,j,k : RnN × R→ R

• Choice function: f : R2 → R× N
• Start vector: x ∈ R2m

We define the computationally most expensive step within Viterbi decoding as an operator:

Vite,f,x
m,n,N : RnN → R2m × N2mn. (24)

The actual decoding is done by evaluating

(y, d) = Vite,f,x
m,n,N

(
c0 ⊕ · · · ⊕ cn−1

)

with ci being the received codewords. y is the probability vector and d the decision vector used by the
traceback part of the Viterbi decoder. All computation is performed within Viterbi butterflies:

Ve,f
i,j : R2×R2n×RnN → R2×R2n×RnN ;

(
x, d, c

) 7→ (
y, d′, c

)
, 0 ≤ i < n, 0 ≤ j < 2m−1 (25)

with

(yk, vk) = f
(
ei,j,2k(c, x0), ei,j,2k+1(c, x1)

)
, 0 ≤ k < 2

d′r =

{
vr mod 2 if br/2c = i

dr else
.

We now write the well-known Viterbi algorithm as operator breakdown rule:

Rule 8 (Pease Viterbi algorithm)

Vite,f,x
m,n,N → π(x,d,c)→(x,d)

◦
(

n−1∏

i=0

(
(I2

m−1→2m−1 × I2
m−1→2m−1 × I1→1)⊗j Ve,f

i,j

) ◦ (
L2m

2m−1 × I2
mn→2mn× InN→nN

)
)

◦ (
Cx×C~0× InN→nN

)
(26)

7

Ak×m→n⊗ I1×r→r →Lrn
n ◦(I1×r→r ⊗Ak×m→n) ◦ (

Ik→k ×Lrm
r

)
(29)

Ir×s→t⊗(
An→n ◦Bk×m→n) →(

It→t⊗An→n) ◦ (
Ir×s→t⊗Bk×m→n)

(30)

Ir×s→t⊗(
Ak×m→n ◦Bk×m→k×m) →(

Ir×s→t⊗Ak×m→n) ◦ (
(Ir→r × Is→s)⊗ Bk×m→k×m)

(31)

Ir×s→rs⊗ It×u→tu → Irt×su→rstu (32)
(
Ikm→km⊗Ar→n) ◦ (

Ik→k ⊗Bs→mn) → Ik→k ⊗(
(Im→m⊗Ar→n) ◦ Bs→mn)

(33)
(
Ik→k ⊗Lmn

n

) ◦ Lkmn
km →(

Lkn
k ⊗ Im→m)

(34)
(
Ak×m×Br×s)⊗ (

Ct×u×Dv×w) →(
Ak×m⊗Ct×u)× (

Br×s⊗Dv×w)
(35)

(
Ak×m×Br×s) ◦ (

Ct×u×Dv×w) →(
Ak×m ◦Ct×u)× (

Br×s ◦Dv×w)
(36)

I1→1⊗A →A (37)

Ik→k ◦ Ik→k → Ik→k (38)

Lkmn
n ◦(Ik→k ⊗Lmn

m

) →Lkn
n ⊗ Im→m (39)

Table 1: Operator identities.

2.5 Numerical Integration
The numeric integral of a function

f : R→ R

using the Gauss quadrature formula for n points is obtained by

Qn(f) =
n∑

i=1

λi,nf(xi,n) (27)

with xi,n being the abscissas and λrn being the Cotes numbers.
We define the integration operator as constant operator Qf,n, parameterized by a function f :

Qf,n : R0 → R, with f : R→ R (28)

We write (27) as breakdown rule for (28):

Rule 9 (Gauss integration)

Qf,n → Σn ◦
((

(In→n⊗f) ◦ Cxi,n

) · Cλi,n

)

2.6 All pairs shortest path
3 Operator manipulation

Generalizing tensor product identities.
Example: manipulating MMM formulas. We now show that formula manipulation generalizes to the
operators. We start with

MMMN,M,K → (
IN→N ⊗LM

M/MB

) ◦ (
MMMN,MB ,K ⊗ I1×M/MB→M/MB

)

◦ (
IKN→KN ×(IK→K ⊗LM

MB
)
)

(40)

8

and apply (29):

MMMN,MB ,K ⊗ I1×M/MB→M/MB →
LMN

MBN ◦
(
I1×M/MB→M/MB ⊗MMMN,MB ,K

) ◦ (
IKN→KN ×LKM

M/MB

)
. (41)

Using (34) we can simplify the first line of (44):

(
IN→N ⊗LM

M/MB

) ◦ LMN
MBN → LNM/MB

N ⊗ IMB→MB (42)

Using (36), (38), and (39) we simplify
(
IKN→KN × LKM

M/MB

) ◦ (
IKN→KN ×(IK→K ⊗LM

MB
)
)

→ IKN→KN ×(
LKM

M/MB
◦(IK→K ⊗LM

MB
)
)

→ IKN→KN ×(
LKM/MB

M/MB
⊗ IMB→MB

)
. (43)

Substituting (42) and (43) into (44) yields

MMMN,M,K → (
LNM/MB

N ⊗ IMB→MB
)

◦ (
I1×M/MB→M/MB ⊗MMMN,MB ,K

) ◦ (
IKN→KN ×(LKM/MB

M/MB
⊗ IMB→MB)

)
(44)

for Rule 5.
Parallelization through formula manipulation.

9

