Breakdown Rules¶
Base Rules¶
Definition¶
# In spiral-core\namespaces\spiral\transforms\dft\dft_rules.gi
DFT_Base := rec(
forTransposition := false,
applicable := nt -> nt.params[1] = 2 and not nt.hasTags(),
apply := (nt, C, cnt) -> F(2)
)
Twiddle Function for DFT¶
Tw1 := (n,d,k) -> Checked(
IsPosIntSym(n), IsPosIntSym(d), IsIntSym(k),
fCompose(dOmega(n,k),
diagTensor(dLin(div(n,d), 1, 0, TInt),
dLin(d, 1, 0, TInt))));
Rule Methods¶
PrintActiveRules(DFT); # rules for DFT currently active
DFT_Base.switch; # filed in rule to determine active
t := DFT(2);
DFT_Base.applicable(t); # is the rule applicable
DFT_Base.children(t); # all possible Algorithmic choices
DFT_Base.apply(t, [], []); # t->spl for a particular choice
Cooley-Tukey Rule¶
Definition¶
# In spiral-core\namespaces\spiral\transforms\dft\dft_rules.gi
DFT_CT := rec(
maxSize := false,
forcePrimeFactor := false,
applicable := (self, nt) >> nt.params[1] > 2
and not nt.hasTags()
and (self.maxSize=false or nt.params[1] <= self.maxSize)
and not IsPrime(nt.params[1])
and When(self.forcePrimeFactor, not
DFT_GoodThomas.applicable(nt), true),
children := nt -> Map2(DivisorPairs(nt.params[1]),
(m,n) -> [ DFT(m, nt.params[2] mod m),
DFT(n, nt.params[2] mod n) ]),
apply := (nt, C, cnt) -> let(mn := nt.params[1],
m := Rows(C[1]), n := Rows(C[2]),
Tensor(C[1], I(n)) *
Diag(fPrecompute(Tw1(mn, n, nt.params[2]))) *
Tensor(I(m), C[2]) *
L(mn, m)
)
)
Applicability¶
Cooley Tukey requires a non-prime size.
t := DFT(2);
t1 := DFT(4);
t2 := DFT(8);
t3 := DFT(20);
DFT_CT.applicable(t); # see for which sized DFT_CT
DFT_CT.applicable(DFT(5)); # is applicable
DFT_CT.applicable(t1);
DFT_CT.applicable(t2);
DFT_CT.applicable(t3);
Children: Algorithmic Choices¶
c1 := DFT_CT.children(t2); # enumerate all algorithmic choices
c2 := DFT_CT.children(t2);
c3 := DFT_CT.children(t3);
Expand DFT(8) by Hand¶
s := DFT_Base.apply(t, [], []); # expand DFT(2) -> F(2)
s1 := DFT_CT.apply(t1, [s, s], [t, t]); # DFT(4) -> SPL
s2 := DFT_CT.apply(t2, [s1, s], [t1, t]); # DFT(8) -> SPL
MatSPL(t2) = MatSPL(s2);
Ruletrees and SPL Revisited¶
From Transform to SPL Formula¶
n := 8; k := -1; # transform parameters
opts := CopyFields(SpiralDefaults, # local configuration
rec(breakdownRules := rec(
DFT := [DFT_Base,
CopyFields(DFT_CT, rec(maxSize := 20))])));
t := DFT(n, k); # transform
rt := RandomRuleTree(t, opts); # get rule tree
spl := SPLRuleTree(rt); # SPL formula
Impact of Configuration¶
PrintActiveRules(DFT);
opts.breakdownRules.DFT;
DFT_CT.maxSize; # global configuration unchanged
ct := Filtered(opts.breakdownRules.DFT, i->i.name = DFT_CT.name)[1];
ct.maxSize; # access local configuration
t2 := DFT(21); # works with global but not local opts
rt := RandomRuleTree(t2, SpiralDefaults);
rt2 := RandomRuleTree(t2, opts);
FindUnexpandableNonterminal(t2, opts); # Where do we fail?
ct.maxSize := false; # remove guard in DFT_CT
rt2 := RandomRuleTree(t2, opts); # try again
FindUnexpandableNonterminal(t2, opts); # Where do we fail now?