End to End, from Transform to C Code¶
DFT(8) to C¶
n := 8; k := -1; # transform parameters
opts := SpiralDefaults; # default options
opts.useDeref := false; # prefer array[] over *(deref)
t := DFT(n, k); # transform
rt := RandomRuleTree(t, opts); # get rule tree
spl := SPLRuleTree(rt); # Debug: SPL formula
ss1 := spl.sums(); # Debug: SPL->Sigma-SPL w/o optimization
ss := SumsRuleTree(rt, opts); # Correct: from rt -> Sigma-SPL
c1 := CodeSums(ss, opts); # Debug: Sigma-SPL->code
c := CodeRuleTree(rt, opts); # Correct: rt-> code in one shot
PrintCode("dft8", c, opts); # final code
Using DP and CodeRuleTree¶
n := 1024; k := -1; # transform parameters
opts := SpiralDefaults; # default options
opts.globalUnrolling := 16; # set smaller unrolling
t := DFT(n, k); # transform
best := DP(t, rec(), opts); # run search
rt := best[1].ruletree;
c := CodeRuleTree(rt, opts); # Correct: rt-> code in one shot
PrintCode("dft"::StringInt(n), c, opts); # final code
Correctness Checks¶
tm := MatSPL(t); # symbolic complex cyclotomic matrix
tmr := MatSPL(RC(t)); # symbolic real cyclotomic matrix
splm := MatSPL(spl); # symbolic complex cyclotomic matrix
tmr := MatSPL(RC(t)); # symbolic real cyclotomic matrix
ssm := MatSPL(ss); # symbolic double-precision matrix
cm := CMatrix(c, opts); # symbolic double-precision matrix
tm = splm; # symbolically equivalent
InfinityNormMat(tmr - ssm); # only equivalent up to rounding error
InfinityNormMat(tmr - cm); # only equivalent up to rounding error
Other Examples¶
Import(dct_dst, realdft); # load DCT/DST and Real DFT package
opts := SpiralDefaults; # default options
t1 := DFT(31); # a larger prime size
t2 := DCT3(32); # a larger cosine transform of type 3
t3 := PRDFT(17); # Real DFT in the "pack" format
t4 := PrunedDFT(128, 16, [0,1,5,6,7]);
ts := [t1, t2, t3, t4];
rts := List(ts, tt->RandomRuleTree(tt, opts));
cs := List(rts, rr->CodeRuleTree(rr,
CopyFields(SpiralDefaults, rec(globalUnrolling := 64))));